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Size Effects: 

 

1.Surface-to-Volume Ratio versus Shape 

2.Magic Numbers 

3.Surface Curvature 

4.Strain Confinement 

5.Quantum Effects 



4. Strain Confinement 

Planar defects, such as 

dislocations are also affected 

when present in a nanoparticle. 

 

 Dislocations play a crucial 

role in plastic deformation, 

thereby controlling the 

behavior of materials when 

subjected to a stress above the 

yield stress.  



In the case of an infinite crystal, the strain energy of a perfect edge 

dislocation loop is given by: 

where  

μ = shear modulus. 

b = Burgers vector. 

 r = radius of the dislocation stress field. 

 c = core cutoff parameter.  



•In the nanoscale regime, it is vital to take into account the effect posed 

by the nearby free surfaces.  

 

•In other words, there are image forces acting on the dislocation half-

loop. 

 

• As a consequence, the strain energy of a perfect edge dislocation loop 

contained in a nanoparticle of size R is given by: 

Where rd is the distance between the dislocation line and the 

surface of the particle. 



         Comparison 

 

•A comparison of Equations reveals that for small particle sizes, 

the stress field of the dislocations is reduced.  

 

•In addition, the presence of the nearby surfaces will impose a 

force on the dislocations, causing dislocation ejection toward the 

nanoparticle’s surface.  

 

•The direct consequence of this behavior is that nanoparticles 

below a critical size are self-healing as defects generated by any 

particular process are unstable and ejected.  



5. Quantum Effects 

•In bulk crystalline materials, the atomic 

energy levels spread out into energy bands. 

The valence band, which is filled with 

electrons, might or might not be separated 

from an empty conduction band by an energy 

gap.  

 

•For conductor materials such as metals, there 

is typically no band gap. Therefore, very little 

energy is required to bring electrons from the 

valence band to the conduction band, where 

electrons are free to flow.  

 

 

 



•For insulator materials such as 

ceramics, the energy band gap is 

quite significant, and thus 

transferring electrons from the 

valence band to the conduction 

band is difficult.  

 

 

•In the case of semiconductor 

materials such as silicon, the band 

gap is not as wide, and thus it is 

possible to excite the electrons 

from the valence band to the 

conduction band with some 

amount of energy.  



 Behavior of bulk crystalline materials  

through dimensions 
 

For 0-D nanomaterials, where all the dimensions are at the 

nanoscale, an electron is confined in 3-D space. Therefore, no 

electron delocalization (freedom to move) occurs.  

 

For 1-D nanomaterials, electron confinement occurs in 2-D, 

whereas delocalization takes place along the long axis of the nano 

wire/rod/tube.  

 

For 2-D nanomaterials, the electrons will be confined across the 

thickness but delocalized in the plane of the sheet. 

 

For 3-D nanomaterials, the electrons are fully delocalized in all 

dimensions. 



•For 0-D nanomaterials the electrons are fully confined.  

•For 3-D nanomaterials the electrons are fullydelocalized.  

•In 1-D and 2-D nanomaterials, electron confinement and 

delocalization coexist. 



Effect of confinement by  quantum 

mechanics 

•The effect of confinement on the resulting energy 

states can be calculated by quantum mechanics, as 

the “particle in the box” problem.  

 

•In this treatment, an electron is considered to exist 

inside of an infinitely deep potential well (region 

of negative energies), from which it cannot escape 

and is confined by the dimensions of the 

nanostructure. 



In 0-D, 1-D, and 2-D, the effects of confinement on the energy state can 

be written respectively as: 

where ħ = h/2π, h is Planck’s constant, m is the mass of the 

electron, L is the width (confinement) of the infinitely deep 

potential well, and nx, ny, and nz are the principal quantum 

numbers in the three dimensions x, y, and z.  



•The smaller the dimensions of the nanostructure 

(smaller L), the wider is the separation between the 

energy levels, leading to a spectrum of discrete 

energies. 

 

 

• In this fashion, the band gap of a material can be 

shifted toward higher energies by spatially confining 

the electronic carriers. 



Number of conduction electrons (En  )  

Another important feature of an energy state En is the number of 

conduction electrons, N (En), that exist in a particular state.  

 

As En is dependent on the dimensionality of the system, so is the 

number of conduction electrons.  

 

This also means that the number of electrons dN within a narrow 

energy range dE, which represent the density of states D (E), i.e., 

D (E) = dN/dE, is also strongly dependent on the dimensionality 

of the structure.  

 

The density of states as a function of the energy E for conduction 

electrons will be very different for a quantum dot (confinement in 

three dimensions), quantum wire (confinement in two dimensions 

and delocalization in one dimension), quantum well (confinement 

in one dimension and delocalization in one dimension), and bulk 

material (delocalization in three dimensions. 



Because the density of states determines various properties, the 

use of nanostructures provides the possibility for tuning these 

properties.  

 

For example, photoemission spectroscopy, specific heat, the 

thermo power effect, excitons in semiconductors and the 

superconducting energy gap are all influenced by the density of 

states.  

 

Overall, the ability to control the density of states is crucial for 

applications such as infrared detectors, lasers, superconductors, 

single-photon sources, biological tagging, optical memories, and 

photonic structures. 

 




